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The stream function is obtained in the form of an expansion in powers
of 1/r. It is shown that the pature of the velocity distribution is de-
termined by the basic function of the stream function. The resuits ob-
tained are compared with experimental data,

Materials such as processed peat, plastic clay,
petroleum products, dough, paint, etc. are known to
possess viscoplastic properties.

These properties have been the subject of 8 num-
ber of experimental studies [7—-11], etc.

Theoretical studies in rheology lead to the neces-
sity of integrating nonlinear differential equations of
higher orders.

The theory of motion of viscoplastic bodies has
been the subject of research by M. P. Volarovich,
A. M. Gutkin, A. Kh. Kim, A. Kh. Mirzadzhanzade,
P. K. Shchipanov [1-5], and other authors.

This article considers the problem of the motion of
a viscoplastic body between two coaxial cones. A
general method of solving the problem of motion of a
viscoplastic body in a cone was given by Kim in [3].
The analogous problem for a viscous liquid was solved
by Slezkin [6]. As Lozovskii [10] has shown, the re-
sults of this solution are applicable to viscoplastic
bodies such as peat.

The equations of motion of a viscoplastic body can
be obtained as a result of the joint solution of the
Hencky-Il'yushin rheological equation of state

T, = 2(n + 1/h) D,
and the Cauchy equilibrium equation
divIl = pya

(the body forces are relatively small and may be ne-
glected),

2( 7+ %—) div(i)(,—Q—;—g—gradh D, —gradp =p,a. (1)

The problem may conveniently be solved in conical
coordinates r, ®, «@. The motion is assumed to be
stationary and axisymmetric. Then the following re-
marks may be made regarding the projections of the
velogity: vy = vp(r,®); vg = vg(r,®); vg = 0.

Solving jointly the equations obtained as a result
of projecting Eq. (1) onto the r and ® axes and intro-
ducing the notation
3,
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This is a fourth-order nonlinear partial differential
equation. In the problem considered it can be reduced
to a third-order linear ordinary differential equation.
In order to find the unknown functions v,. and vg we
add to Eq. (2) the strain continuity equation divv = 0.
For the given problem it takes the form (1/r) »
* (8/0r)(r*vy) + (1/5in@)(9/86)(vgsine) = 0.
We will perform the calculations in the coordinates
r, s =sin®, «. Moreover, we introduce the stream
fungtion P(r,s), representing it in the form ¢ (r,s) =

= (PZ,ES) , where @q(s} is the basic function of the

stream function, ¢j(s) are the correcting functions of
the stream function, i = 0. The velocity components
are expressed in terms of the stream function as fol-
lows:
i e 1 0y
r2sin® - 40 rsin® or .

We will formulate the problem of finding the basic
functions ¢y(s). In this case

YT de ()
T r2s ds 7’

ki ve=0.

If we neglect terms of the order of 1/r®%, Eq. (2) takes
the form

liaks 6(37v+1:ctg8),~_0
FIcS 9 )

The first integral of this equation is

0t
34 =C. (3)
30 + 3 4 1ctg®=C

We express the left side of Eq. (3) in terms of ¢(s), .
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We introduce the functions

O=¢VI—5 Vg @rI—9,
U=—129/) 129 + (P (1 —5.
Equation (4) then takes the form

T
Vi=s JE+U+ Vls *o=c
or
ds®) _ (€C—U)s
ds Vi=g '
whence
OD=—CVY1I—8& +
ds
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Fig. 1. Relation between the
variables ® and o.

When the quantity @, — @, is small, the integral in the
right side of (5) can be neglected,

sO=—CVYI—¢8 +0C,
or

s Y1 —¢
Vi + (¢ (1—5)
We denote ¢'/¢ = q; then Eq. (6) takes the form
qVIT=—s/V1I25¥@(0=¢) =C—CVI—8

We solve this equation for q,
g=2 VI (C,—CVI=+)/
/l/(l—sz)[s2_((:1—01/1—s2 2.

CI—CVI——82 . (6)

Fig. 3. Motion of lead tracers characterizing the motion
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The relation between ¢ and ® is shown graphically in
Fig. 1.
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Fig. 2. Theoretical velocity distri-
bution.

On the interval @ < ® <®; ¢ > 0, on the interval
@ <6 <@y, q> 0(8 is the point at which the function
@ (@) reaches its maximum value).

According to the experiments of a number of in-
vestigators, for example, N. V. Lozovskii [10], the
velocity increases very rapidly close to a solid wall.
Accordingly, we may assume that ¢' (@) — «© and
' (@,) — —. Since ¢(@,) = 0 and () * 0, q(®;) —
— +o0 and q (@) ——.

Taking into account the above, for the interval
®; < ® < @ we have

g=V12 (C,—CcV1—s)/
NV a—sls—(c,—CcVT== )] @

Since g(sy) = ©, C; — CV1 — s? = 5. In view of the
fact that q(s;) — —~w, we obtain C; — CV1 — s% = —s,.
From the system of equations

CI;CI/I —s =5,
CI—CVI——sg =,

we find the constants of integration C and Cj:

C=(s;+s)V1—s2 —V1—g),

S+ 8,
Vl—s .
W—SZ—VI—SI '

Since q(@,) = 0, we have one more equation,

C=s+

C,—CVi—s =0,

from which we find the s = sy at which the function
¢(s) reaches a maximum,

o=+ V1—-cic. 8)

-

of viscoplastic particles.
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Fig. 4. Positions of tracers characterizing the velocity
distribution at different pressures:
1) p =0, 2) 0.495 atm, 3) 0.7, 4) 0.8, 5) 0.995.

We now integrate Eq. (7),
9 V12 (¢, —CcYT=+)

¢ V(1~s2>[s2—(01—61/1—2)2]'

j 12 (C,—CYi—s)
1/(1—s2) —(C—CVT=% ]

We find the constant of integration C, by setting ¢(sg) =
= 1. Then Cy = 0. Thus for the function ¢(s) find
the expression

ds -+ C,.

Ing =

o) =
C,—CYT=2 S
=exp( fV(l — 9 [~ (c—CcVI=a )] ’ ) ©

The integral can be evaluated numerically. Then

v, =aqg/r,
where
2=+ Q2nlp(s) — o (.
Using Eq' (9), we will consider an example taking

@®; = 5° and @, = 15°.

The graph of the velocity function obtained is shown
in Fig. 2.

Using Eq.
@ = 8° 40'.

Thus, we have found the basic function of the stream
function ¢y(s). In order to determine the correcting
function @qy(s) it is necessary to represent the stream
function in the form

P, ) =g (8) + @ (s)r..
Performing calculations similar to those involved in
constructing differential equation (2), from which we
obtained the basic function, we can obtain an equation
in which the unknown function is the function ¢ (s).

But it is possible to show that this will be a fourth-
order homogeneous linear equation with variable co-
efficients and zero initial conditions; therefore ¢;(s) =
= 0. Quite analogously, ¢3(s) = 0. For this reason
the stream function can be written in the form

P(r, 8) = @ () + @3 (S)/r°.

In order to determine the correcting function ¢4 (s)
we can use the equation

2 . 2
1 Pwv r@v 9 o

(8) we find that for the given specific case
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s=ctg®@=V1—# /s

With respect to the function @j(s) Eq. (10) is a
fourth-order linear inhomogeneous equation with vari-
able coefficients. Neglecting terms of the order of
1/r% it can be represented in the form

4
Vg9 =1
i=0

where A and A; are functions depending on s, @,(s),
T, 1.

In solving other problems similartothat considered,
Kim [3] showed that the correcting functions have very
little effect on the velocity and that its nature is de-
termined by the basic function ¢g(s). This is also con-
firmed by the experimental data we have obtained. A
number of experiments were performed to investigate
the motion of a peat mass. For this purpose we con-
structed two coaxial cones for which ®; = 5° and @, =
= 15°. Lead tracers were placed inthe peat mass which
moved under pressure, the positions of the tracers at
different pressures being photographed with an X-ray
apparatus.

The photos obtained (Fig. 3) show that the stream-~
lines are straight lines drawn from the vertex of the
cone (Fig. 4). This confirms that the stream function
is determined by the basic function and is relatively
unaffected by the correcting function.

Moreover, the experiment confirmed the correct-
ness of the velocity distribution curve obtained theo-
retically. Figure 5 shows a graph of the velocity func-
tion for peat with a moisture content of 86% at dif-
ferent pressures and flow rates and, for comparison,
the velocity curve obtained theoretically from Eq. (9).
These curves approach each other in the middle but
diverge considerably at the edges, at the walls of the
cones. The experimental curve shows that slip occurs
near the walls when a viscoplastic body moves under
the boundary conditions considered.

Apart from the velocity distribution, it is also of
interest to determine one other unknown in Eq. (11),
namely, the pressure. For this purpose we can use
the equations obtained as a result of projecting Eq.

(1) onto the coordinate axes. After the velocity has
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Fig. 5. Velocity distribution curves obtained
experimentally (1) and theoretically (2).

been determined these equations can be written in the
form

9 _
ar 1 ©), (11)

ap

da
where f; and f, are known functions. The solution of
system (11) has been investigated in the literature [3].

=0,

NOTATION

Ii, is the stress tensor deviator; 5 is the plastic
viscosity; 7y is the limiting shear stress; h is the
strain rate intensity; <i>0 is the strain rate tensor de-
viator; II is the stress tensor; py is the density; a is
the acceleration, pis the pressure creating motion;
® is the angle between axis of cone and radius r drawn
from vertex of cone to given point; 2@, and 2@, are
the plane angles at cone vertices; Q is the flow rate.
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